
Live Programming in Hostile Territory
July 2025

Orion Reed
me@orionreed.com

Chris Shank
chris.shank.23@gmail.com

“[People] make their own history, but they do not
make it as they please; they do not make it under
self-selected circumstances, but under circumstances
existing already, given and transmitted from the
past.”

— Karl Marx

Abstract
Live programming research gravitates towards the
creation of isolated environments whose success is
measured by domination: achieving adoption by dis�
placing rather than integrating with existing tools
and practices. To counter this tendency, we advocate
that live programming research broaden its purview
from the creation of new environments to the aug�
menting of existing ones and, through a selection
of prototypes, explore three adversarial strategies for
introducing programmatic capabilities into existing
environments which are unfriendly or antagonistic to
modification. We discuss how these strategies might
promote more pluralistic futures and avoid aggrega�
tion into siloed platforms.

1. Introduction
Live programming research is broadly concerned with
the creation of programming systems which provide
immediate feedback on the dynamic behavior of a
program even while running [1]. This promise of
immediate feedback requires the ability to modify,
inspect, and manipulate programs while they execute
—capabilities that established programming envi�
ronments, designed around edit�compile�run cycles,
cannot reliably provide. We believe this fundamental
mismatch drives live programming research to face
inwards, towards the creation of fully circumscribed
universes — often viewed as the most pragmatic
means to ensure the runtime malleability that live�
ness requires. This inward focus produces systems
which can be operated on from within themselves,
but neglect their participation in wider contexts of
use [2], encouraging what Kell describes as a success�
by�domination strategy [3] where systems achieve
adoption by displacing rather than integrating with
existing tools and practices.

Whereas traditional programming leverages ubiqui�
tous plaintext infrastructures that resist single�sys�
tem dominance through their simplicity and interop�
erability [4], live programming’s visual requirements
largely preclude utilizing this pluralistic foundation.
This threatens to shift the experience of program�
ming into one mediated through siloed platforms,
losing the freedom and plurality that plaintext
infrastructures provide. Rather than accept this tra�
jectory, we advocate for this community to extend
its research from the creation of new environments
to the augmenting of existing ones, situating new
systems in their present contexts of use.

We explore three strategies for live programming in
‘hostile territory’—environments that are unfriendly
or antagonistic to modification. Central to these
strategies is free addressability—a property we argue
is essential for augmenting systems without requiring
cooperation from their original creators. We demon�
strate, through a selection of prototypes from the
folkjs research project [5], how we can exploit the
addressable surfaces of user interfaces to situate
new affordances in environments that were never
designed to accommodate them. These interventions
are not ends in themselves, but create fragile bridges
that demonstrate the potential of more robust infra�
structure and, by setting expectations of interoper�
ability, make it harder to retreat into isolation.

2. Free Addressability
The practice of information hiding—originally ad�
vocated by Parnas to support “centralized manage�
ment process for large, disconnected teams” [6]—
creates challenges for software evolution, particularly
in contexts where multiple authors work across orga�
nizational boundaries rather than within coordinated
teams. As Ostermann et al. observe, it is unclear how
to decide up�front which design decisions should be
hidden versus exposed, and software evolution often
brings new stakeholders who need access to previ�
ously hidden information [7]. This results in what
Basman et al. call “hermetic” systems—isolated
environments that “give insufficient consideration to
what lies outside the system” [8]. While information

1

mailto:me@orionreed.com
mailto:chris.shank.23@gmail.com


hiding serves its intended purpose within coordinated
development teams, contemporary software ecosys�
tems increasingly demand cross�system integration
and external extensibility. Our approaches require
reaching into systems whose internal components
these design choices obscure.

We believe free addressability—a term we adopt
from Basman et al. [8]—is key to enabling outward�
facing integration and moving beyond success�by�
domination strategies. Free addressability embraces
transparent, publicly addressable state through
queries, selectors, names, or other mechanisms that
make parts of a running system targetable from the
outside without requiring permission or coordination
from the original creators, seeking to “maximally
advertise the structure of the application via a trans�
parent addressing scheme” [8].

Our adversarial strategies exploit the fact that user
interfaces often expose more addressable surfaces
than the underlying program—through DOM ele�
ments, accessibility trees, and visual components.
This disparity creates crucial leverage points for live
programming interventions, allowing us to exploit
addressability where it exists and demonstrating
where additional addressability would be beneficial.
These addressable surfaces provide the basis for
working in hostile territory by offering ways to situate
live programming capabilities within environments
that were never designed to accommodate them.

3. Strategies
Our strategies draw inspiration from what Doctorow
calls “adversarial interoperability” � interfacing with
systems without the permission of their original cre�
ators [9]. By exploiting the addressable surfaces of
user interfaces, we can introduce live programming
capabilities through three distinct approaches that
work around, rather than require, system coopera�
tion.

We explore three approaches that differ in their
relationship between system and environment:
1. Annotating existing environments with new af�

fordances
2. Embedding systems into heterogenous host envi�

ronments
3. Extending closed systems through re�appropria�

tion of available addressing schemes.

3.1. Adversarial Annotation
Adversarial annotation challenges the assumption
that live programming requires purpose�built uni�
verses, making it possible to embed new affordances
where people already work. Rather than creating
destinations for users to visit, annotation distributes
programming capabilities as lightweight augmenta�
tions that attach to existing structure—demonstrat�
ing that environments are not the only path to
liveness.

While web�based systems often break when their
DOM tree structure is modified, they often tolerate
the addition of new attributes that encode interac�
tive functionality. This tolerance creates one path
for escaping isolated environments — annotations
can introduce liveness without requiring users to
abandon their tools or migrate their work.

Our first prototype demonstrates how we can
annotate regions of text with a custom HTML
attribute that binds a Language Server Protocol
(LSP) server—a standardized interface for providing
language�specific programming assistance—directly
to existing web content. This annotation adds syntax
highlighting, diagnostics, and auto�completion to
web pages or text editors that lack these capabilities,
without requiring any structural modifications to the
host document. The CSS Custom Highlight API
enables syntax highlighting and diagnostic underlines
to be rendered as visual overlays, while tooltips dis�
play auto�completion suggestions and error messages
without altering the underlying text. Some LSP
functionality, such as code folding, cannot be imple�
mented through pure annotation since it requires
structural changes, but this approach demonstrates
how substantial programming capabilities can be
introduced through minimally invasive interventions.

Figure 1: A custom HTML attribute that binds an
LSP server to an editable style tag

The flexible pattern matching of CSS selectors en�
ables these annotations to discover and interact with

2



their surroundings, working opportunistically with
available document structure rather than requiring
pre�negotiated structural agreements. Unlike envi�
ronments that must control their entire context,
annotations can situate themselves within foreign
systems and coexist with existing features.

Our second prototype ports event propagators [10]
to a custom HTML element, creating computa�
tional relationships between interface elements that
enable spreadsheet�like reactivity between arbitrary
UI components of existing websites. Through CSS
selectors, these elements can define connections be�
tween DOM nodes, transforming static web pages
into reactive documents where changes propagate
automatically across components.

Annotations can also encourage the decomposition
of functionality trapped within monolithic systems,
making it available as reusable components. Our
folk�sync attribute exemplifies this approach by
extracting collaborative editing capabilities from sys�
tems like Webstrates and exposing them through
a simple HTML annotation. This attribute makes
document subtrees collaborative across devices, en�
abling real�time shared editing of any web content
without requiring migration to dedicated platforms.

Figure 2: A chess board, event propagator, and
spreadsheet

The composability of these annotations becomes ap�
parent when multiple augmentations work together
to create capabilities that exceed the sum of their
parts. The figure above shows a chess board,
event propagator, and spreadsheet—each authored
as standard HTML with appropriate annotations
—that not only synchronize state across multiple
windows through folk�sync, but also react to each
other’s changes through event propagators. Moving
a chess piece triggers the event propagator to log
the move in the spreadsheet, creating a real�time
game log that updates across all connected devices.
This demonstrates how lightweight interventions can

compose into rich, interactive systems that exhibit
the computational relationships and collaborative
capabilities typically associated with purpose�built
environments, yet remain situated within ordinary
web pages that can be inspected, modified, and
extended through standard web technologies.

These interventions succeed by creating the experi�
ence of an environment without requiring one —
users encounter live programming capabilities that
feel indigenous to their current tools rather than
isolated systems forcing them to move elsewhere.

3.2. Adversarial Embedding
Adversarial embedding focuses on changing the
relationship between web�based software systems
and their host environments. Unlike annotation,
which augments existing systems in place, embed�
ding makes whole systems composable within new
contexts by altering how they interface with the
outside world. This approach recognizes that soft�
ware authors are constrained by tooling conventions,
security policies like same�origin restrictions, and
architectural assumptions that treat these systems
as discrete, non�composable units and discourage
unmediated cross�system communication. To make
systems embeddable in new host environments, we
can work cooperatively with software authors or ad-
versarially by crossing the containment boundaries of
iframe isolation, domain restrictions, and sandboxing
policies.

Web applets [11] demonstrate a cooperative ap�
proach, enabling any web�based software to be em�
bedded within other web pages through a lightweight
event�based protocol wrapped around an iframe,
allowing web pages to externalize specific state and
actions to their host environment. The applet author
retains full control over what to expose and must
opt�in to participating in a shared protocol. This
requires minimal work to add to existing systems but
becomes challenging when seeking to externalise rich
or complex behavior, requiring great care to design
interfaces which anticipate future interactions with
the system.

In some cases, we can create systems that expose
their entire internal state through addressable sur�
faces like the DOM. Our HTML spreadsheet pro�
totype implements the system as custom HTML
elements where each cell is a DOM element with
properties for its evaluated value, formula, and
dependencies. This makes every aspect addressable
through CSS selectors and enables permissionless

3



augmentation—modifying behavior at runtime, us�
ing CSS to transform cell positions, performing
graph layout of dependencies, or creating entirely
new visualizations. External systems can query state,
subscribe to changes, and extend functionality with�
out requiring ongoing coordination between original
and further authors, though this requires systems
designed from the ground up with full addressability.

Figure 3: A freely�addressable HTML spreadsheet
element.

When systems provide no embedding interfaces,
our cross�iframe injection prototype demonstrates
how adversarial techniques can force integration by
circumventing the single�origin security model. The
elevated privileges of web extensions allow us to
bypass iframe containment boundaries and inject
JavaScript code into both a host page and an em�
bedded iframe from different domains and establish
real�time bidirectional communication between sys�
tems that typically exist in isolation. This approach
reveals how security models designed to prevent
malicious interference also encumber interoperability
and integration, suggesting a need for security archi�
tectures designed around composition rather than
isolation.

Figure 4: Web extension injecting capabilities across
iframe boundaries

3.3. Adversarial Extension
When systems provide no addressable surfaces,
adversarial extension creates addressability by re�
purposing whatever infrastructure remains available.
Unlike annotation, which works with systems de�
signed to tolerate additions, or embedding which
requires systems that allow runtime code injection,
extension operates on closed systems which do not
tolerate addition to their internal state or modifica�
tion to their execution environment.

Accessibility APIs represent an addressable infra�
structure ripe for re�appropriation. Operating sys�
tems expose accessibility trees to support assistive
technologies, creating a parallel addressable repre�
sentation of every running application’s interface.
While this interface provides only a limited view of
application state focused on user�facing elements
rather than internal program logic, it offers near�
universal coverage across all running applications.

Our prototype demonstrates how this infrastructure
can be repurposed for external augmentation—a
WebSocket server connects web interfaces to acces�
sibility and windowing APIs, making it possible to
query, subscribe to, and modify the interface state of
any running application. This creates an addressable
surface where none existed before.

Figure 5: Ivory app extended with editable accessi�
bility tree and regex�based text editing UI.

The accessibility tree prototype shows the Ivory
messaging application augmented with two external
interfaces: an editable outline view of its accessibility
tree and a regex�based find�and�replace interface
for text editing. This regex functionality, absent
from Ivory itself, demonstrates the kind of read�
write querying possible across boundaries we usually
consider closed—proprietary applications with no
APIs, closed source code, or deliberate restrictions
on extensibility. The positioning system leverages
accessibility coordinate information to spatially at�
tach these augmentations to their target elements,

4



making them feel more like native features than ex�
ternal overlays. Since applications cannot opt out of
accessibility infrastructure without breaking assistive
technology compliance, this approach works even
with systems designed to resist external intervention,
and the same augmentations can work universally
across any application.

These three strategies are complementary rather
than competing—each addresses different con�
straints in the landscape of existing systems. Anno-
tation works with systems that tolerate additions,
embedding enables portability across environments,
and extension exploits mandatory addressable sur�
faces when no other options remain. The choice
of strategy depends on the specific affordances and
restrictions of the target environment.

4. Related Work
Systems like Sifter [12], Vegimite [13], Rousillon
[14], Wildcard [15], and Joker [16] exemplify adver�
sarial strategies by enabling end�users to customize
web pages, scraping data into spreadsheets and ta�
bles, and reflecting modifications back to the original
page. By packaging themselves as web extensions
rather than standalone applications, these systems
situate themselves inside the environments they aug�
ment rather than requiring users to bring their data
elsewhere.

Whereas the systems above try to abstract away web
technologies behind familiar interfaces, Webstrates
[17] takes the opposite approach, creating a collab�
orative authoring environment where “the state of
the DOM itself corresponds to the authorial shared
state” [8]. Webstrates demonstrates the potential of
exploiting the DOM’s inherent addressability as a
foundation for live programming in shared authorial
environments. Our DOM sync attribute explores sim�
ilar territory, enabling real�time collaborative editing
of DOM structures without requiring migration to a
dedicated platform.

Engraft [18] explores composition between live pro�
gramming tools by creating interfaces that allow
different systems to be embedded within each other.
While Engraft acknowledges that live programming
systems should integrate with the outside world, its
focus on inward composition—maintaining proper�
ties within controlled environments—contrasts with
our emphasis on outward integration into hostile
territory.

5. Limitations & Future Work
Our current exploration focuses on additive modifi�
cations and does not address removing or replacing
parts of running programs. The approaches we pre�
sent also concentrate heavily on UI�level intervention
points. Significant work remains in applying adver�
sarial techniques at other levels of the software stack,
from runtime systems to operating system primi�
tives. Kell’s work on liballocs suggests one promising
direction for free addressability at the level of Unix
processes [19].

A key limitation emerges around the relationship
between addressability and modifiability. While free
addressability focuses on making system parts tar�
getable, it doesn’t address how those parts can ac�
tually be modified. The DOM is exploitable because
CSS selectors provide addressing while referenced
elements expose clear manipulation interfaces—a
relationship that remains undertheorized in our work.

Most of our examples target web and browser
contexts, limiting their applicability to the broader
software ecosystem. Future work should explore how
these strategies translate to desktop applications,
mobile environments, and system�level software. The
fragility of some approaches—such as relying on
unstable CSS selectors or working around obfuscated
DOM structures—highlights the need for more ro�
bust addressing schemes.

An important direction for future research involves
enabling interoperability and co�existence between
different live programming models that may have
conflicting guarantees or execution models. What
primitives enable different computational paradigms
to work together? These questions become urgent
as we move toward ecosystems where multiple live
programming systems must coexist and collaborate.

Perhaps most ambitiously, we envision extending
these principles to operating system design. What
would it look like if accessibility trees provided stable,
rich addressing schemes for all running applications?
How might we design OS�level APIs that assume
external composition rather than treating it as an
afterthought?

6. Conclusion
When users experience live programming capabili�
ties situated in place rather than sequestered in
dedicated environments, we hope they begin to see
such integration as normal rather than exceptional.
We believe pluralistic practices that subvert intended

5



boundaries create pressure like water finding cracks
— persistent forces that gradually reshape systems
toward openness.

Much of live programming research focuses on cre�
ating better environments without considering how
change actually happens in computing ecosystems.
We believe the community needs to confront the
question of change: how do isolated programming
tools evolve into integrated, composable ecologies
without falling into success�by�domination strate�
gies? Our approach rests on the belief that fragile
bridges and adversarial interventions create social
pressures that drive systemic change. By demon�
strating what becomes possible when addressable
surfaces are exploited, we establish expectations of
interoperability and integration. These prototypes
point toward a future where external composition is
a design assumption rather than an afterthought.

The scale of this challenge becomes clear when
we consider the difficulty of departing from tradi�
tion. Plaintext infrastructures resist single�system
dominance, but this resistance was not inevitable.
As Hall observes, what we think of as “human�
readable plaintext” is actually the massive set of
text encoding, display, manipulation, and processing
artifacts currently ubiquitous in computing: “ASCII,
UTF8, text editors, text-field or text-area UI wid-
gets, terminals, keyboards, String types, object-to-
String rendering functions, human-readable format
libraries, tokenizers, parsers, escape sequences and
input sanitization, Base64 encoding, line-ending and
whitespace conventions, and the fallback data-flavor
of the copy/paste clipboard” [4]. This ubiquity
required decades of standardization, adoption, and
gradual convergence—it did not emerge from any
inherent philosophical commitment to openness.
The challenge is achieving similar ubiquity for live
programming systems. This is not to advocate that
specialized environments like Blender or Ableton
should be decomposed—such tools serve important
purposes within their domains. Rather, we argue
that all systems should consider their participation
in broader ecosystems rather than operating in com�
plete isolation.

By working in hostile territory, we hope to demon�
strate that live programming need not retreat into
isolated environments to achieve its goals. The
strategies we explore—annotation, embedding, and
extension—offer different paths for engaging with
the existing software landscape as it exists today.

While our prototypes remain fragile and limited, they
point to a future where live programming capabilities
become as ubiquitous as plaintext itself. The ques�
tion is not whether any single system will achieve
domination, but whether we can work within our in�
herited circumstances. In this view, live programming
research becomes work of transformation rather than
escape.
References
[1] P. Rein, S. Ramson, J. Lincke, R. Hirschfeld, and T. Pape, “Exploratory and

Live, Programming and Coding: A Literature Study Comparing Perspectives on
Liveness,” The Art, Science, and Engineering of Programming, vol. 3, no. 1, Jul.
2018, doi: 10.22152/programming�journal.org/2019/3/1.

[2] C. Clark and A. Basman, “Tracing a Paradigm for Externalization: Avatars and
the GPII Nexus,” 2017.

[3] S. Kell, “Convivial Design Heuristics for Software Systems,” in Conference
Companion of the 4th International Conference on Art, Science, and Engineer-
ing of Programming, Porto Portugal: ACM, Mar. 2020, pp. 144–148. doi:
10.1145/3397537.3397543.

[4] C. Hall, “Rethinking the Human�Readability Infrastructure,” in Proceedings
of the Workshop on Future Programming, in FPW 2015. New York,
NY, USA: Association for Computing Machinery, Oct. 2015, pp. 1–6. doi:
10.1145/2846656.2846657.

[5] C. Shank and O. Reed, “Folkjs.” Accessed: Jul. 22, 2025. [Online]. Available:
https://folkjs.org/

[6] P. Tchernavskij, “Designing and Programming Malleable Software,” 2019.

[7] “Revisiting Information Hiding: Reflections on Classical and Nonclassical Modu�
larity,” in Lecture Notes in Computer Science, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 155–178. doi: 10.1007/978�3�642�22655�7_8.

[8] A. Basman, C. Lewis, and C. Clark, “The Open Authorial Principle: Supporting
Networks of Authors in Creating Externalisable Designs,” in Proceedings of the
2018 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, in Onward! 2018. New York,
NY, USA: Association for Computing Machinery, Oct. 2018, pp. 29–43. doi:
10.1145/3276954.3276963.

[9] C. Doctorow, “Adversarial Interoperability.” Accessed: Aug. 09, 2020. [Online].
Available: https://www.eff.org/deeplinks/2019/10/adversarial�interoperability

[10] O. Reed, “Scoped Propagators.” Accessed: Jan. 16, 2025. [Online]. Available:
https://www.orionreed.com/posts/scoped�propagators

[11] M. Rupert and V. Steven, “Unternet�Co/Web�Applets.” Accessed: Jul. 21, 2025.
[Online]. Available: https://github.com/unternet�co/web�applets

[12] D. F. Huynh, R. C. Miller, and D. R. Karger, “Enabling Web Browsers to Augment
Web Sites' Filtering and Sorting Functionalities,” in Proceedings of the 19th
Annual ACM Symposium on User Interface Software and Technology, Montreux
Switzerland: ACM, Oct. 2006, pp. 125–134. doi: 10.1145/1166253.1166274.

[13] J. Lin, J. Wong, J. Nichols, A. Cypher, and T. A. Lau, “End�User Programming
of Mashups with Vegemite,” in Proceedings of the 14th International Conference
on Intelligent User Interfaces, Sanibel Island Florida USA: ACM, Feb. 2009, pp.
97–106. doi: 10.1145/1502650.1502667.

[14] S. E. Chasins, M. Mueller, and R. Bodik, “Rousillon: Scraping Distributed Hierar�
chical Web Data,” in Proceedings of the 31st Annual ACM Symposium on User
Interface Software and Technology, Berlin Germany: ACM, Oct. 2018, pp. 963–
975. doi: 10.1145/3242587.3242661.

[15] G. Litt and D. Jackson, “Wildcard: Spreadsheet�Driven Customization of Web
Applications,” in Conference Companion of the 4th International Conference on
Art, Science, and Engineering of Programming, Porto Portugal: ACM, Mar. 2020,
pp. 126–135. doi: 10.1145/3397537.3397541.

[16] K. Katongo, G. Litt, K. Jin, and D. Jackson, “Joker: A Unified Interaction Model
For Web Customization,” 2022.

[17] C. N. Klokmose, J. R. Eagan, S. Baader, W. Mackay, and M. Beaudouin�Lafon,
“\mkbibemph{Webstrates}: Shareable Dynamic Media,” in Proceedings of the
28th Annual ACM Symposium on User Interface Software & Technology, Char�
lotte NC USA: ACM, Nov. 2015, pp. 280–290. doi: 10.1145/2807442.2807446.

[18] J. Horowitz and J. Heer, “Engraft: An API for Live, Rich, and Composable
Programming,” in Proceedings of the 36th Annual ACM Symposium on User
Interface Software and Technology, San Francisco CA USA: ACM, Oct. 2023,
pp. 1–18. doi: 10.1145/3586183.3606733.

[19] S. Kell, “The Inevitable Death of VMs: A Progress Report,” in Conference
Companion of the 2nd International Conference on Art, Science, and Engi-
neering of Programming, Nice France: ACM, Apr. 2018, pp. 61–62. doi:
10.1145/3191697.3191728.

6

https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/3397537.3397543
https://doi.org/10.1145/2846656.2846657
https://folkjs.org/
https://doi.org/10.1007/978-3-642-22655-7_8
https://doi.org/10.1145/3276954.3276963
https://www.eff.org/deeplinks/2019/10/adversarial-interoperability
https://www.orionreed.com/posts/scoped-propagators
https://github.com/unternet-co/web-applets
https://doi.org/10.1145/1166253.1166274
https://doi.org/10.1145/1502650.1502667
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/3397537.3397541
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/3586183.3606733
https://doi.org/10.1145/3191697.3191728

	Abstract
	Introduction
	Free Addressability
	Strategies
	Adversarial Annotation
	Adversarial Embedding
	Adversarial Extension

	Related Work
	Limitations & Future Work
	Conclusion
	References

